

Where to Look? Predictive Perception with Application to Planetary Exploration

Kyohei Otsu, Ali-Akbar Agha-Mohammadi, Michael Paton

Presenter: Sisir Karumanchi

ICRA 2018

Introduction

Current

- Four rovers on Mars
- Looking for the evidence of life
 - Frequent stops for scientific interests
- Day-to-day operations
 - Planning tactical activities for 1-3 sols (Martian day) in a single ground-inthe-loop cycle
 - "Restricted sols" due to Earth-Mars time gap
- Limited use of AutoNav (autonomous navigation)

Future (2020 and beyond)

Mars 2020

Mars Sample Return Fetch rover (concept)

- More drive-oriented missions
 - e.g., Collect sample tubes and return to the base before the launch chance
 - Travel far longer distance per sol
- Higher dedication to AutoNav
 - Drive beyond the line of sights
 - Drive on restricted sols
- Increased onboard resources
 - Vision-dedicated processors (Mars 2020) and multi-core general-purpose processors (future missions)

Computer Vision in Autonomous Navigation

- Computer vision is a major source for autonomous navigation
- Today's vision system requires human intervention (e.g., manual mast pointing) to deal with challenges such as
 - Texture-poor terrain: Lack of salient features
 - Self-shadow: Confusion in visual feature tracking

Perception-aware Motion Planning

What is the best actions to maximize perception performance?

Key Technologies

- 1. Performance prediction with future measurements
 - Most-likely measurement prediction with stochastic map
- 2. Optimal mast trajectory planning
 - Spatio-temporal RRT*

1. Performance Prediction

Quantize the performance of future measurements

1. Performance Prediction

How to predict most-likely future measurement?

Mast state: (Pan, Tilt, Time)

Where to point mast?

When to take image?

Spatio-temporal RRT*

Spatio-temporal RRT*

Mast configuration

 Samples must be connected in chronological order

Spatio-temporal RRT*

Mast configuration

 Rewire connections to always keep optimal tree

Spatio-temporal RRT*

- Continue to grow the tree until it converges, or reaches max iteration
- A path with minimum leaf cost is the optimal mast trajectory

Simulation

Fixed mast (baseline)

Proposed

- JPL's DARTS/ROAMS Simulator
 - Used by past flight missions
 - Two regions: feature-rich (light) and feature-poor (dark)
- Performed spatio-temporal RRT* in receding horizon manner (5 m horizon)

Tree Evolution

Fixed timing and direction (baseline)

Angle Profile

Iteration 120

Azimuth/Elevation [deg] 150 100 50 -50 -100 -150 2 0 Distance [m]

Iteration 800

Position Estimation Error

Median error for 10 different maps

Receding Horizon Planning

Replan every step within 5m horizon

Contributions:

- Proposed a method to actively steer visual sensors to improve autonomous navigation performance
- Developed an online search algorithm of mast trajectories using predicted future camera views

Acknowledgement:

 The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

Where to Look? Predictive Perception with Application to Planetary Exploration

Kyohei Otsu, Ali-Akbar Agha-Mohammadi, Michael Paton Contact: Kyohei.Otsu@jpl.nasa.gov

Data Flow

